787 research outputs found

    High Resolution Study of Magnetic Ordering at Absolute Zero

    Get PDF
    High fidelity pressure measurements in the zero temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the exactitude that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.Comment: 5 pages, 4 figure

    Chromium at High Pressures: Weak Coupling and Strong Fluctuations in an Itinerant Antiferromagnet

    Get PDF
    The spin- and charge-density-wave order parameters of the itinerant antiferromagnet chromium are measured directly with non-resonant x-ray diffraction as the system is driven towards its quantum critical point with high pressure using a diamond anvil cell. The exponential decrease of the spin and charge diffraction intensities with pressure confirms the harmonic scaling of spin and charge, while the evolution of the incommensurate ordering vector provides important insight into the difference between pressure and chemical doping as means of driving quantum phase transitions. Measurement of the charge density wave over more than two orders of magnitude of diffraction intensity provides the clearest demonstration to date of a weakly-coupled, BCS-like ground state. Evidence for the coexistence of this weakly-coupled ground state with high-energy excitations and pseudogap formation above the ordering temperature in chromium, the charge-ordered perovskite manganites, and the blue bronzes, among other such systems, raises fundamental questions about the distinctions between weak and strong coupling.Comment: 11 pages, 9 figures (8 in color

    A multi-resolution approach for adapting close character interaction

    Get PDF
    Synthesizing close interactions such as dancing and fighting between characters is a challenging problem in computer animation. While encouraging results are presented in [Ho et al. 2010], the high computation cost makes the method unsuitable for interactive motion editing and synthesis. In this paper, we propose an efficient multiresolution approach in the temporal domain for editing and adapting close character interactions based on the Interaction Mesh framework. In particular, we divide the original large spacetime optimization problem into multiple smaller problems such that the user can observe the adapted motion while playing-back the movements during run-time. Our approach is highly parallelizable, and achieves high performance by making use of multi-core architectures. The method can be applied to a wide range of applications including motion editing systems for animators and motion retargeting systems for humanoid robots

    An energy-driven motion planning method for two distant postures

    Get PDF
    In this paper, we present a local motion planning algorithm for character animation. We focus on motion planning between two distant postures where linear interpolation leads to penetrations. Our framework has two stages. The motion planning problem is first solved as a Boundary Value Problem (BVP) on an energy graph which encodes penetrations, motion smoothness and user control. Having established a mapping from the configuration space to the energy graph, a fast and robust local motion planning algorithm is introduced to solve the BVP to generate motions that could only previously be computed by global planning methods. In the second stage, a projection of the solution motion onto a constraint manifold is proposed for more user control. Our method can be integrated into current keyframing techniques. It also has potential applications in motion planning problems in robotics

    Indexing 3D scenes using the interaction bisector surface

    Get PDF
    The spatial relationship between different objects plays an important role in defining the context of scenes. Most previous 3D classification and retrieval methods take into account either the individual geometry of the objects or simple relationships between them such as the contacts or adjacencies. In this article we propose a new method for the classification and retrieval of 3D objects based on the Interaction Bisector Surface (IBS), a subset of the Voronoi diagram defined between objects. The IBS is a sophisticated representation that describes topological relationships such as whether an object is wrapped in, linked to, or tangled with others, as well as geometric relationships such as the distance between objects. We propose a hierarchical framework to index scenes by examining both the topological structure and the geometric attributes of the IBS. The topology-based indexing can compare spatial relations without being severely affected by local geometric details of the object. Geometric attributes can also be applied in comparing the precise way in which the objects are interacting with one another. Experimental results show that our method is effective at relationship classification and content-based relationship retrieval

    Workshop: Data-Driven Animation Technology (D2AT)

    Get PDF

    SkillVis: A Visualization Tool for Boxing Skill Assessment

    Get PDF
    Motion analysis and visualization are crucial in sports science for sports training and performance evaluation. While primitive computational methods have been proposed for simple analysis such as postures and movements, few can evaluate the high-level quality of sports players such as their skill levels and strategies. We propose a visualization tool to help visualizing boxers' motions and assess their skill levels. Our system automatically builds a graph-based representation from motion capture data and reduces the dimension of the graph onto a 3D space so that it can be easily visualized and understood. In particular, our system allows easy understanding of the boxer's boxing behaviours, preferred actions, potential strength and weakness. We demonstrate the effectiveness of our system on different boxers' motions. Our system not only serves as a tool for visualization, it also provides intuitive motion analysis that can be further used beyond sports science
    • …
    corecore